Shyam Lal College, University of Delhi

Tentative Teaching Plan

Academic Year: 2024-25

Teacher Name: Dr Rajni Arora

Course Name: B.Sc. (Physical Sciences)

Paper Name: Differential Equations (Theory + Tutorial)

Semester: III (August 1, 2024 to November 28, 2024)

UPC: 2352572301

Week	Topics to be covered	Activity	Remarks (References/
			Resources)
Weeks 1 & 2	First order ordinary differential	Discussion	[2]: Chapter 1 (Sections
	equations: Basic concepts and	and	1.1, and 1.2), Chapter 2
	ideas, First order exact differential	illustration	(Sections 2.1, 2.2, and
	equations, Integrating factors and		2.4 up to page 64).
	rules to find integrating factors		
Week 3	Linear equations and Bernoulli	Discussion	[2]: Chapter 2 (Sections
	equations, Initial Value Problems,	and	2.3), Chapter 3 (Section
	Applications of first order	illustration	3.1 up to page 74, and
	differential equations: Orthogonal		Section 3.3 up to page
	trajectories and Rate Problems		94).
Weeks 4 & 5	Basic theory of higher order linear	Discussion	[2]: Chapter 4 (Sections
	differential equations, Wronskian	and	4.1 up to page 115).
	and its properties	illustration	
Weeks 6 & 7	Linear homogeneous equations	Discussion	[2]: Chapter 4 (Section
	with constant coefficients, Linear	and	4.1 from page 120
	non' homogeneous equations,	illustration	onwards, Sections 4.2,
	Method of undetermined		and 4.3).
	coefficients		
Weeks 8 & 9	Method of variation of parameters	Discussion	[2]: Chapter 4 (Sections
	(only second order), Two-point	and	4.4, and 4.5). [2]:
	boundary value problems, Cauchy-	illustration	Chapter 1 (Section 1.3
	Euler equations, Systems of linear		up to page 16). [2]:
	differential equations.		Chapter 7 (Sections 7.1,
			and 7.3).
Weeks 10 &	Partial differential equations: Basic	Discussion	[1]: Chapter 2 (Sections
11	concepts and definitions,	and	2.1 to 2.3, and 2.5).
	Classification and construction of	illustration	
	first-order partial differential		
	equations, Method of		
	characteristics and general		
	solutions of first order partial		

	differential equations.		
Weeks 12 &	Canonical forms and method of	Discussion	[1]: Chapter 2 (Sections
13	separation of variables for first-	and	2.6, and 2.7).
	order partial differential equations	illustration	
Weeks 14 &	Classification and reduction to	Discussion	[1]: Chapter 4 (Sections
15	canonical forms of second-order	and	4.1 to 4.4).
	linear partial differential equations	illustration	
	and their general solutions.		

Reference Books:

- 1. Myint-U, Tyn and Debnath, Lokenath (2007). Linear Partial Differential Equations for Scientist and Engineers (4th ed.). Birkhäuser. Indian Reprint.
- 2. Ross, Shepley L. (1984). Differential Equations (3rd ed.). John Wiley & Sons.

Additional Readings:

- 1. Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). Differential Equations and Boundary Value Problems: Computing and Modeling (5th ed.). Pearson Education.
- 2. Kreyszig, Erwin. (2011). Advanced Engineering Mathematics (10th ed.). Wiley India.
- 3. Sneddon I. N. (2006). Elements of Partial Differential Equations. Dover Publications.

Assessment Activity Schedule: The assessment will be conducted during the course, preferably after the completion of each unit. Weeks 1-5, weeks 6-9 and weeks 10-15 contain three units of syllabus. Besides tests and assignments, students are encouraged to give presentation on the topic of their choice covering the content of the syllabus and applications of the theory.

Shyam Lal College, University of Delhi

Tentative Teaching Plan

Academic Year: 2024-25

Teacher Name: Dr Rajni Arora

Course Name: B.Sc. (Hons) Mathematics

Paper Name: Discrete Mathematics (Theory + Practical)

Semester: III (August 1, 2024 to November 28, 2024)

UPC: 2352012303

Theory classes

Week	Topic to be covered	Activity	Remarks (References/
			Resources)
Week 1	The cardinality of a set	Discussion and illustration	[2] Chapter 3 (Section 3.3).
Weeks 2 & 3	Definitions, examples and basic properties of partially ordered sets, Order-isomorphisms, Covering relations, Hasse diagrams	Discussion and illustration	[1]: Chapter 1 (Sections 1.1 to 1.5, Section 1.6 (up to second bullet page 4), Sections 1.14 to 1.18). [3]: Chapter 1 (Subsection 1.1)
Weeks 4 & 5	Dual of an ordered set, Duality principle, Bottom and top elements, Maximal and minimal elements, Zorn's lemma, Building new ordered sets, Maps between ordered sets.	Discussion and illustration	[1]: Chapter 1 (Sections 1.19 to 1.24, Section 1.25 (only definition of product of partially ordered sets and diagrams to be done), Sections 1.26, 1.34, 1.35(1), and 1.36). [1]: Chapter 2 (Sections 2.1 to 2.2); [3]: Chapter 1 (Subsections 1.2 to 1.4)
Weeks 6 & 7	Lattices as ordered sets, Lattices as algebraic structures, Sublattices, Products, Lattice isomorphism	Discussion and illustration	[1]: Chapter 2 (Sections 2.3 to 2.5, 2.6 (excluding portion on down-set and up-set), 2.7 (only definition of lattices Sub G and N- Sub G to be done), 2.8 to 2.19, 2.22 to 2.25; all results to be stated without proof). [3]: Chapter 1 (Subsections

			1.5 to 1.20).
Weeks 8 & 9	Definitions, examples and properties of modular and distributive lattices	Discussion and illustration	[1]: Chapter 4 (Sections (4.1 to 4.9); [3]: Chapter 1 (Subsections 2.1 to 2.6).
Week 10	The M3–N5 theorem with applications, Complemented lattice, Relatively complemented lattice, Sectionally complemented lattice	Discussion and illustration	[1]: Chapter 4 (Section 4.10 (result to be stated without proof), and Section 4.11). [3]: Chapter 1 (Subsections 2.7, 2.8 (except example(v)), 2.9 - 2.14).(Results in 2.12, and 2.13 to be stated without proof)
Weeks 11 & 12	Boolean algebras, De Morgan's laws, Boolean homomorphism, Representation theorem, Boolean polynomials, Boolean polynomial functions, Equivalence of Boolean polynomials.	Discussion and illustration	[3]: Chapter 1 [Subsections 3.1 to 3.8, and 3.9 (example(i); example (ii) and (iii) both without proofs); For 3.10 to 3.16 (Definitions and examples to be done. All results to be stated without proofs.)]. [3]: Chapter 1 [Subsections 4.1 to 4.10 (Definitions and examples to be done. All results to be stated without proofs)].
Weeks 13 & 14	Disjunctive normal form and conjunctive normal form of Boolean polynomials; Minimal forms of Boolean polynomials, Quine-McCluskey method, Karnaugh diagrams.	Discussion and illustration	[3]: Chapter 1 [Subsections 4.11 to 4.14, 4.16 to 4.18 (Definitions and examples to be done. All results to be stated without proofs)]. [3]: Chapter 1 [Subsections 6.1 to 6.6 (Definitions and examples to be done. All results to be stated without proofs)].
Week 15	Switching circuits and applications, Applications of Boolean algebras to logic, set theory and probability theory.	Discussion and illustration	[3]: Chapter 2 [Subsections 7.1 to 7.5; 8.1, 8.3 to 8.5; 9.1 to 9.13, 9.14{(i) to (iii)}].

Practical classes:

Week	Topic to be covered	Activity
Week 1	Learning basics of Mathematica	Discussion and illustration
		on Mathematica
Weeks 2	Expressing relations as ordered pairs and	Discussion and illustration
	creating relations	on Mathematica
Weeks 3 & 4	Finding whether or not, a given relation is:	Discussion and illustration
	i. Reflexive ii. Antisymmetric	on Mathematica
	iii. Transitive iv. Partial order	
Weeks 5 & 6	Finding the following for a given partially	Discussion and illustration
	ordered set 1. Covering relations. 11. The	on Mathematica
	corresponding Hasse diagram	
	representation. 111. Minimal and maximal	
		D: : 1:11 / /:
Weeks 7 & 8	Finding the following for a subset S of a	Discussion and illustration
	given partially ordered set P1. whether a	on Mathematica
	bound) of S or not ii Set of all upper	
	bounds (lower bounds) of S iii The least	
	upper bound (greatest lower bound) of S if	
	it exists	
Week 9 &	Creating lattices and determining whether or	Discussion and illustration
10	not, a given partially ordered set is a lattice.	on Mathematica
Weeks 11	Finding the following for a given Boolean	Discussion and illustration
	polynomial function: i. Representation of	on Mathematica
	Boolean polynomial function and finding its	
	value when the Boolean variables in it take	
	particular values over the Boolean algebra	
	$\{0,1\}$. ii. Display in table form of all	
	possible values of Boolean polynomial	
	function over the Boolean algebra $\{0,1\}$.	
Weeks 12	Finding the following: i. Dual of a given	Discussion and illustration
	Boolean polynomial/expression. ii. Whether	on Mathematica
	or not two given Boolean polynomials are	
	equivalent. iii. Disjunctive normal form	
	(Conjunctive normal form) from a given	
	Boolean expression. iv. Disjunctive normal	
	form (Conjunctive normal form) when the	
	given Boolean polynomial function is	
Wook 12	Penresenting a given circuit diagram	Discussion and illustration
WEEK IS	(expressed using gates) in the form of	on Mathematica
	Roolean expression (1) Minimizing a given	
	Boolean expression to find minimal	
	expressions	
Week 14 &	Practice sessions and test	
15		

Reference Books:

- 1. Davey, B. A., & Priestley, H. A. (2002). Introduction to Lattices and Order (2nd ed.). Cambridge University press, Cambridge.
- 2. Goodaire, Edgar G., & Parmenter, Michael M. (2006). Discrete Mathematics with Graph Theory (3rd ed.). Pearson Education Pvt. Ltd. Indian Reprint.
- 3. Lidl, Rudolf & Pilz, Gunter. (2004). Applied Abstract Algebra (2nd ed.), Undergraduate Texts in Mathematics. Springer (SIE). Indian Reprint

Additional Readings:

- 1. Donnellan, Thomas. (1999). Lattice Theory (1st ed.). Khosla Pub. House. Indian Reprint.
- 2. Rosen, Kenneth H. (2019). Discrete Mathematics and its Applications (8th ed.), Indian adaptation by Kamala Krithivasan. McGraw-Hill Education. Indian Reprint 2021.

Assessment Activity Schedule: The assessment will be conducted during the course, preferably after the completion of each unit. Weeks 1-5, weeks 6-10 and weeks 11-15 contain three units of syllabus. Besides tests and assignments, students are encouraged to give presentation on the topic of their choice covering the content of the syllabus and applications of the theory.