Course: B.A. Programme Semester: II Paper: Basic Statistics for Economics Teacher: Ms Priyambada Gupta

Week	Topic(s)	Teaching Methodology Adopted/
		Continuous Internal Evaluation
1	Population and Samples	Interactive lecture
2	Types of Statistics, Sources of	Lectures and real world examples
	Data, Describing Qualitative	
	and Quantitative	
	data	
3	Measures of Central Tendency	Problem Solving
4	Measures of Dispersion	Group solving problems
5	Probability	Practice Questions
6	Estimation of Population	Classroom discussion
	Parameters from Sample Data	
7	Probability Distribution	Lectures
8	Probability Distribution	Practice Questions, Test
9	Covariance and Correlation	Summarizing all formulas
10	Properties of estimators	Interactive lecture
11	Confidence intervals	Graphs and diagrams, classroom
		discussion
12	Testing of Hypothesis	Interactive lecture, Case Study
13	Testing of Hypothesis	Assignments/Quizzes
14	Power of test	Remedial classes for slow learners
15	Revision	Presentations, MCQ tests, Discussions
16	Revision	Remedial Classes

Course: B.A. Programme Semester: VI Paper: Basic Computational Techniques for Data Analysis (SEC) Teacher: Ms Priyambada Gupta

Week	Topic(s)	Teaching Methodology Adopted/ Continuous Internal Evaluation
1	Introduction to data bases and introduction to Excel Inputting of Data; basic Multiplication, Division and Addition of Data (Relatively and Absolutely); Formatting Cells particularly Decimal points; (vi)	Practical Sessions
2-3	Sorting of Data, Pivot Tables; Use of Line Graph, Column Chart, Histogram, Pie Chart and Scatter Plot.	Practical sessions
4	Measures of Central Tendency	Problem Solving
5	Measures of Dispersion	Group solving problems
6-8	Introduction to calculation of financial formulae: Net Present Value (NPV), Internal Rate of Return, Future Value, Equated Monthly Installment (EMI), Compound Growth Rate	Practice Questions
9-12	Review of the concepts of Correlation and Rank Correlation. Introduction to the method of Ordinary Least Squares (OLS). Testing of hypothesis	Classroom discussion and Practical session
13-15	Revision and Project work	Remedial Classes and project work discussion

Course: B.A. (Hons.) Economics Semester: II Paper: Intermediate Mathematical Methods for Economics Teacher: Ms Priyambada Gupta

Weeks	Topic(s)	Teaching Methodology
1-2	Unit-1	Lectures
	Vector and Vector spaces;	
	their operations, scalar	
	product, norm, orthogonality;	
	linear transformations:	
	properties, system of linear	
	equations	
3-4	Matrix representation and	Lectures and Problem solving
	elementary operations;	in class
	determinants:	
	characterization, properties	
	and applications	
5	Eigenvalues and eigenvectors,	Lectures and problem set.
	diagonalization, spectral	Remedial discussion for slow
	theorem.	learners.
		Continuous Assessment and
6 9	Linit 2	Loctures on the surrent tonics
0-8	Functions of several real	with discussion on the related
	variables: Geometric	topics covered in the previous
	representation: graphs and	semester
	level curves: differentiable	Semester
	functions	
9	Higher order derivatives:	Solving and answering
	properties and applications:	questions in groups for
	the implicit function theorem	Continuous Assessment
10	Mid- Semester Break	
11	Application to comparative	Lectures and Test
	statics; homogeneous and	
	homothetic functions:	
	characterisation, applications.	
12-13	Unit-3	Lectures
	Multivariate optimization	
	Convex sets; geometric	
	properties of functions: convex	
	functions, their	
	characterisation, properties	
	and applications; quasi-convex	
	functions,	
14-16	Unconstrained optimisation:	Lectures and Test. Problem
	geometric characterisation,	Solving in class for Continuous
	characterisation using calculus,	Assessment
	applications	