Shyam Lal College

Teaching Plan (August 2024, odd Semester) B.Sc. IInd Year (Hons.), Semester III

By **Dr. Ompal Singh Yadav**

Week days	Topics to be covered
Week -01	General group trends with special reference to electronic configuration, colour
Week-02	Variable valence, magnetic properties
Week-03	Catalytic properties and ability to form complexes.
Week-04	Stability of various oxidation states
Week-05	E.M.F. (latimer diagram), forst diagrams of Mn and Cr.
Week-06	A brief discussion of difference between the first second and third transition series
Week-07	A brief discussion of electronic configuration, oxidation states, colour of Lanthanide
Week-08	Colour, spectral and magnetic properties and Lanthanide contraction (causes and effects)
Week-09	Separation of lanthanoids by ion exchange method.
Week-10	Comparison with organic polymers, classification, structure and applications of following inorganic polymers: • Borates
Week-11	Comparison with organic polymers, classification, structure and applications of following inorganic polymers: • Silicates
Week-12	Comparison with organic polymers, classification, structure and applications of following inorganic polymers:

	• Silicones
Week-13	Semester Break
Week-14	Comparison with organic polymers, classification, structure and applications of following inorganic polymers: • Phosphates
Week-15	Comparison with organic polymers, classification, structure and applications of following inorganic polymers: • Phosphazenes (for cyclic polymers, only trimer is to be discussed)
Week-16	Particle size, Precipitation, Coagulation, Peptization, Co-precipitation, Digestion, Filtration and washing the precipitate,
Week-17	Drying and ignition the precipitate and Remedial Class

DEPARTMENT OF CHEMISTRY

<u>Category-I</u> B Sc. (Hons) Chemistry

DISCIPLINE SPECIFIC CORE COURSE -7 (DSC-7): Chemistry of d- and fblock Elements & Quantitative Inorganic Analysis

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
Code		Lecture	Tutorial	Practical/		(if any)
				Practice		
Chemistry of d- and f- Elements & quantitative Inorganic Analysis (DSC-7)	04	02	0	02	Passed Class 12 th with Physics, Chemistry, Mathematics	NIL

Learning Objectives

The Objectives of this course are as follows:

- To provide thorough knowledge about the d- and f- block elements with respect to the general group trends, physical and chemical properties of these elements.
- To familiarize the students with the d- and f-block elements and get an idea about horizontal similarity in a period in addition to vertical similarity in a group.
- To impart the knowledge about inorganic polymer
- To give an idea about the principles of gravimetric analysis.

Learning outcomes

By studying this course, the students will be able to:

- List the important properties of transition metals, lanthanoids, and actinoids
- Use Latimer diagrams to predict and identify species which are reducing, oxidizing and tend to disproportionate and calculate skip step potentials.
- Describe the classification, structure and applications of Inorganic Polymers.
- List and use the principles of gravimetric analysis for quantitative analysis

SYLLABUS OF DSC-7

UNIT - 1: Transition Elements

(12 Hours)

General group trends with special reference to electronic configuration, colour, variable valency, magnetic properties, catalytic properties, and ability to form complexes. Stability of various oxidation states and e.m.f. (Latimer diagrams), Frost diagrams of Mn and Cr.

A brief discussion of differences between the first, second and third transition series

UNIT - 2: Lanthanoids and Actinoids

(8 Hours)

A brief discussion of electronic configuration, oxidation states, colour, spectral and magnetic properties. Lanthanoid contraction (causes and effects) separation of lanthanoids by ion exchange method.

UNIT – 3: Inorganic Polymer

(8 Hours)

Comparison with organic polymers, classification, structure and applications of following inorganic polymers:

- Borates
- Silicates, silicones
- Phosphates
- Phosphazenes (for cyclic polymers, only trimer is to be discussed)

UNIT – 4: Principles of gravimetric analysis

(2 Hours)

Particle size, Precipitation, Coagulation, Peptization, Co-precipitation, Digestion, Filtration and washing the precipitate, Drying and ignition the precipitate

Practical component (60 Hours)

(Laboratory periods:15 classes of 4 hours each)

(A) Gravimetry

- 1. Estimation of Ni(II) using dimethylglyoxime (DMG).
- 2. Estimation of copper as CuSCN.
- 3. Estimation of iron as Fe_2O_3 by precipitating iron as $Fe(OH)_3$. (by homogeneous and heterogeneous method)
- 4. Estimation of Al(III) by precipitating with oxime and weighing as Al(oxime)₃ (aluminiumoxinate).

(B) Inorganic Preparations

- 1. Potassium aluminium sulphate KAl(SO₄)₂.12H₂O (potash alum) or Potassium chromium sulphate KCr(SO₄)₂.12H₂O (chrome alum).
- 2. Manganese phosphate and
- 3. Sodium peroxoborate

(C) Paper chromatographic separation of following metal ions (minimum two should be done):

1. Ni(II) and Co(II)