TEACHING PLAN FOR B.A. Program (Major) SEMESTER- II

DSE COURSE: ECON024

(BASIC ECONOMETRICS)

TEACHER: Ms. GUNJAN KHANDELWAL

READINGS:

- 1. A.H. Studenmund, Using Econometrics: A Practical Guide,7th Edition, Pearson, 2017
- 2. D. N. Gujarati and D.C. Porter, Essentials of Econometrics, 4 th Edition, McGraw Hill International Edition, 2010.

UNIT		TOPIC	READINGS	NO. OF
				LECTURES
1.	Regression	OLS estimators, hypothesis	Studenmund: Ch1, 2, 4, 5	15 Hours
	Models	Testing using software and		
		practical application; multiple		
		Regression Model -		
		estimation, Testing and		
		practical application using		
		software like GRETL/EViews/		
		R/Stata/EXCEL etc		
2.	Qualitative	Application of qualitative	Studenmund: Ch-7 (till 7.3) ,	15 Hours
	variables	variables, Nonlinear Models,	Gujarati & Porter:- Ch-6 (till	
	and	Applications of dummy	6.5)	
	Estimation	variables		
3.	Issues with	Violation of normal	Gujarati & Porter:- Ch3	15 Hours
	Classical	distribution, Collinearity with	(Pg78-79) for Jarque Bera	
	Assumptions	independent variables,	Test for Normality of	
		heteroscedasticity,	residuals	
		autocorrelation, practical	Studenmund: Chapter 8, 9	
		application	(pg 273-289, only Durbin-	
			Watson test to be done),10	
			(pg 306- 321, only White's	
			Test to be done)	

ASSESSMENT:

- 1. Internal Assessment (IA): 30 Marks one class test, and other class test/assignment (12 marks each), and 6 marks for attendance.
- 2. Continuous Assessment (CA): 40 marks As per the University Rules.
- 3. The end semester exam: 90 marks will comprise numerical and other related questions.

TEACHING PLAN FOR B.A. (HONS) ECONOMICS SEMESTER- II

UGCF COURSE: ECON012

(INTRODUCTORY ECONOMETRICS)

READINGS:

- 1. D. N. Gujarati and D.C.Porter, Essentials of Econometrics, 4th Edition, McGraw Hill International Edition, 2010.
- 2. Wooldridge, J. M. (2019). Introductory econometrics: A modern approach. 7th edition, Cengage learning

UNIT		TOPIC	READINGS	NO. OF
				LECTURES
1.	Simple	OLS method of Estimation and	Gujarati: Ch 2, Ch 3	10 Hours
	Linear	Properties of estimators,	Wooldridge: Ch2: Example	
	Regression	Measures of Fit, Testing of	2.1- Example 2.9 and 2.13.	
	Model	Hypotheses, Prediction,		
		Introduction to econometric		
		software and practical		
		application using econometric		
		software (GRETL/EViews/		
		R/Stata/EXCELetc.)		
2.	Multiple	OLS method of estimation and	Gujarati: Ch 4	8 Hours
	Linear	Properties of OLS estimators,	Wooldridge: Ch 3: Examples	
	Regression	Testing of Hypotheses,	3.1, 3.3, 3.4,3.5 Ch 4: all	
	Model	Measures of fit, practical	Examples except 4.7, 4.8	
		application using econometric	and 4.10	
		software (GRETL/EViews/		
		R/Stata/EXCEL etc.)		
3.	Functional	Nonlinear Models and	Gujarati: Ch 5, Ch 6	9 Hours
	Forms and	Transformations of Variables,	(excluding 6.7)	
	Qualitative	Dummy variables, practical	Wooldridge: Ch 2: Example	
	independent	application using econometric	2.10, 2.11, 2.12 Ch 6:	
	variables	software (GRETL/EViews/	Example 6.2, 6.3 Ch 7:	
		R/Stata/EXCEL etc.)	Example 7.1 – Example 7.11	
4.	Violations of	Consequences, Detection, and		9 Hours
	Assumptions	Remedies: Multicollinearity,	Gujarati: Ch 8, Ch 9	
		Heteroscedasticity, Serial	(Excluding Sec 9.5), Ch 10	
		Correlation, practical	(Excluding Sec 10.6,	
		application using econometric	Appendix 10A)	
		software		

	(GRETL/EViews/R/Stata/EXCEL etc.)	Wooldridge : Ch 8: All Examples except 8.3, 8.8, 8.9. Ch 12: All Examples except 12.1, 12.7, 12.8, 12.9.	
5. Specification	Omission of a relevant	Gujarati: Ch 7	9 hours
Analysis	variable; ϖ Inclusion of	Wooldridge: Ch 3: Example	
	irrelevant variable;	3.6 Ch 9: Example 9.1, 9.2,	
	specification	9.5, 9.6, 9.7	

Some Suggestive **Open-source Database for Practical:**

1. World Bank: <u>https://data.worldbank.org/</u>

- 2. International Monetary Fund Data: <u>https://www.imf.org/en/Data</u>
- 3. Reserve Bank of India database: <u>https://dbie.rbi.org.in/#/dbie/home</u>
- 4. Ministry of Statistics for Program Implementation: www.mospi.gov.in

5. Open Government Data Platform India: https://data.gov.in

Assessment:

- 1. Internal Assessment (IA): 30 Marks one class test, and other class test/assignment (12 marks each), and 6 marks for attendance.
- 2. Continuous Assessment (CA): 40 marks –10 marks for group project, a 20 marks end semester practical exam and a 10 marks viva voce as per the directives of University of Delhi.
- 3. The end semester exam: 90 marks will comprise numerical and other questions.

TEACHER: Ms. GUNJAN KHANDELWAL

TEACHING PLAN FOR B.A. (HONS) ECONOMICS SEMESTER- II

UGCF COURSE: ECON006

(INTERMEDIATE STATISTICS)

CREDITS: 4

READINGS:

1. Devore, J. (2012). Probability and Statistics for Engineers, 8th ed. Cengage Learning.

UNIT		TOPIC	READINGS	NO. OF
				LECTURES
1.	Sampling distribution of a Statistic	Concept of Statistic and parameter, Sampling distributions, Central Limit Theorem.	Devore: Ch 5.3, 5.4, 5.5	12 Hours (Suggested weightage 20 Marks)
2.	Estimation	Estimator and methods of estimation, Point Estimation: method of moments and method of maximum likelihood; Interval Estimation, Properties of an estimator: Consistency, Unbiasedness, Efficiency and Sufficiency, confidence level and sample size, intervals based on Z-distribution, tdistribution and chi- squared distribution, F- distribution.	Devore: Ch 6, Ch 7, selected sections of Ch 9	12 Hours (Suggested Weightage 30 Marks)
3.	Inference	Meaning of a statistical hypothesis, errors in hypothesis testing: Type 1 and Type 2 errors, power of a test.	Devore: Ch 8.1	9 Hours (Suggested combined Weightage 40 Marks)
4.	Hypothesis Testing	Testing of a population Mean, proportions - small and large sample tests, P-value; Testing for variance; Testing	Devore: Ch 8.1, Section 11.4 is optional).	12 Hours (Suggested combined Weightage 40 Marks)

hypothesis for two	
samples, testing for	
equality of means;	
testing for ratio of	
variances.	

Supplementary Reading:

1. Hogg, R., Tanis, E., Zimmerman, D. (2021) Probability and Statistical inference, 10th Edition, Pearson.

2. Larsen, R., Marx, M. (2011). An introduction to mathematical statistics and its applications. Prentice Hall.

3. Miller, I., Miller, M. (2017). J. Freund's Mathematical Statistics with Applications, 8th ed. Pearson. 4. Anderson, D. R, Sweeny, D. J, et. al (2019), Statistics for Business and Economics, 13th edition, Cengage Learning.

5. Jan Kmenta (1997), Elements of Econometrics, 2 nd ed. Macmillan publishing; New York and Collier Macmillan; London.

Assessment:

- 1. Internal Assessment (IA): 30 Marks two class tests (12 marks each), and 6 marks for attendance.
- 2. Continuous Assessment (CA): 40 marks –problem solving, interpretation of results pertaining to a data (35 marks) and 5 marks for attendance.
- 3. The end semester exam: 90 marks will comprise numerical and other questions.

TEACHER: Ms. GUNJAN KHANDELWAL