Teaching Plan (2024-2025) B.Sc. (H) Chemistry Semester III and V (01-Aug-24 to 27-Nov-24) Dr. Radhika Gupta

Department of Chemistry, Shyam Lal College

Dates	Topics To Be Covered			
	B.Sc. (H) Chemistry Semester III	B.Sc. (H) Chemistry Semester V		
	DSE-1 Inorganic Materials of	DSC-15 Quantum Chemistry and Chemical		
	Industrial Importance	Bonding		
01-Aug-24 to	Unit 4:	Unit 1:		
10-Aug-24	Primary Batteries	Introduction to quantum chemistry.		
		Postulates of quantum mechanics		
12-Aug-24 to	Unit 4:	Unit 1:		
17-Aug-24	Primary and secondary batteries,	Postulates of quantum mechanics,		
	characteristics of an Ideal Battery	Schrödinger equation and its application to		
		free particle and particle in a box rigorous		
		treatment)		
19-Aug-24 to	Unit 4:	Unit 1:		
24-Aug-24	Pb- acid battery	Quantization of energy levels, zero-point		
		energy and Heisenberg Uncertainty		
		principle, Extension to two and three-		
		dimensional boxes, separation of variables,		
		degeneracy		
26-Aug-24 to	Unit 4:	Unit 1:		
31-Aug-24	Li-metal batteries, Li-ion batteries,	wave functions, probability distribution		
	Li-polymer batteries	functions, nodal properties, Quantum		
		rules		
02 Son 24 to	-			
02-3ep-24 to		Qualitative treatment of simple harmonic		
07-3ep-24		oscillator model of vibrational motion:		
09-Sen-24 to	Linit 4:	Unit 1:		
14-Sen-24	Solid state electrolyte batteries fuel	Setting up of Schrödinger equation and		
14 000 14	cells	discussion of solution and wave functions		
		Vibrational energy of diatomic molecules		
		and zero-point energy.		
16-Sep-24 to		Unit 1:		
21-Sep-24		Angular momentum. Rigid rotator model of		
-		rotation of diatomic molecule. Schrödinger		
		equation in Cartesian and spherical polar		
		coordinates		
23-Sep-24 to	Unit 4:	Unit 1:		
05-Oct-24	Solar cells and polymer cells	Separation of variables. Spherical		
		harmonics. Discussion of solution		
		(Qualitative)		
07-Oct-24 to		Unit 2:		
12-Oct-24	INTERNAL ASSESSMENT TEST-1	Qualitative treatment of hydrogen atom		
		and hydrogen-like ions: setting up of		
		Schrödinger equation in spherical polar		

		coordinates, radial part and quantization of energy			
		INTERNAL ASSESSMENT TEST-1			
14-Oct-24 to	Unit 5:	Unit 2:			
19-Oct-24	Introduction to zero, one and two-	Average and most probable distances of			
	dimensional nanomaterial	electron from nucleus. Zeeman effect,			
		Introduction of spin quantum number and			
		magnetic spin quantum number			
21-Oct-24 to	Unit 5: Unit 2:				
26-Oct-24	Synthesis, properties and	Setting up of Schrödinger equation for			
	applications of fullerenes	many electron atoms (He, Li),			
		Indistinguishability of electrons and Pauli			
		exclusion principle, Need for			
		approximation methods. Statement of			
		variation theorem and application to			
		simple systems (particle-in-a-box,			
27 Oct 24 to		narmonic oscillator, hydrogen atom).			
03-Nov-24	MID SEMESTER BREAK				
04-Nov-24 to	Unit 3:				
09-Nov-24		Setting up of Schrödinger equation, Born-			
	INTERNAL ACCECCATINE TECT 2	Openheimer approximation, LCAO-MO			
	INTERNAL ASSESSMENT TEST-2	treatment of H_2^+ and its qualitative			
		extension to H ₂			
		INTERNAL ASSESSMENT TEST-2			
11-Nov-24 to	Unit 5:	Unit 3:			
16-Nov-24	Synthesis, properties and	Valence bond (VB) treatment of H_2 ,			
	applications of carbon nanotubes,	Comparison of LCAO-MO and VB wave			
	carbon fibres	functions of H ₂ and their refinements			
18-Nov-24 to	Unit 5:	Unit 3:			
27-Nov-24	Synthesis, properties and	Qualitative description of LCAO-MO of			
	applications of semiconducting and	homonuclear and heteronuclear diatomic			
	superconducting oxides.	molecules-HF and LiH			

SYLLABUS

B.Sc. (H) Chemistry Semester III

DSE-1 Inorganic Materials of Industrial Importance

DISCIPLINE SPECIFIC ELECTIVE COURSE - 2 (DSE-2): Inorganic materials of industrial importance

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility	Pre-requisite of
		Lecture	Tutorial	Practical/ Practice	criteria	the course (if any)
Inorganic Materials of Industrial Importance (DSE-2)	04	03	0	01	Passed Class 12 th with Physics, Chemistry	NIL

Unit 4: Batteries

Primary and secondary batteries, characteristics of an Ideal Battery, principle, working, applications and comparison of the following batteries: Pb- acid battery, Li-metal batteries, Liion batteries, Li-polymer batteries, solid state electrolyte batteries, fuel cells, solar cells and polymer cells.

(9 Hours)

(6 Hours)

Unit 5: Nano dimensional materials

Introduction to zero, one and two-dimensional nanomaterial: Synthesis, properties and applications of fullerenes, carbon nanotubes, carbon fibres, semiconducting and superconducting oxides.

B.Sc. (H) Chemistry Semester V

DSC-15 Quantum Chemistry and Chemical Bonding

DISCIPLINE SPECIFIC CORE COURSE-15 (DSC-15): Quantum Chemistry and Organic Chemistry IV Covalent bonding

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the course		Eligibility	Pre-requisite	
Code		Lecture	Tutorial	Practical/ Practice	criteria	of the course (if any)
Quantum Chemistry and Covalent bonding (DSC-15, Physical Chemistry V)	04	03	-	01	Class 12 th with Physics, Chemistry, Mathematics	

SYLLABUS OF DSC-15 Unit-1: Quantum Chemistry

(Hours: 22)

Postulates of quantum mechanics, quantum mechanical operators and commutation rules, Schrödinger equation and its application to free particle and particle in a box rigorous treatment), quantization of energy levels, zero-point energy and Heisenberg Uncertainty principle; wave functions, probability distribution functions, nodal properties, Extension to two and three- dimensional boxes, separation of variables, degeneracy.

Qualitative treatment of simple harmonic oscillator model of vibrational motion: Setting up of Schrödinger equation and discussion of solution and wave functions. Vibrational energy of diatomic molecules and zero-point energy.

Angular momentum. Rigid rotator model of rotation of diatomic molecule. Schrödinger equation in Cartesian and spherical polar coordinates (derivation not required). Separation of variables. Spherical harmonics. Discussion of solution (Qualitative).

Unit-2: Hydrogen atom

Qualitative treatment of hydrogen atom and hydrogen-like ions: setting up of Schrödinger equation in spherical polar coordinates, radial part and quantization of energy (only final energy expression). Average and most probable distances of electron from nucleus. Zeeman effect, Introduction of spin quantum number and magnetic spin quantum number Setting up of Schrödinger equation for many electron atoms (He, Li), Indistinguishability of electrons and Pauli exclusion principle, Need for approximation methods. Statement of variation theorem and application to simple systems (particle-in-a-box, harmonic oscillator, hydrogen atom).

(Hours: 08)

Unit-3: Covalent bonding

(Hours: 15)

Setting up of Schrödinger equation, Born-Openheimer approximation, LCAO-MO treatment of H_2^+ and its qualitative extension to H_2 , Valence bond (VB) treatment of H_2 , Comparison of LCAO-MO and VB wave functions of H_2 and their refinements, Qualitative description of LCAO-MO of homonuclear and heteronuclear diatomic molecules-HF and LiH.