TEACHING PLAN FOR B.A. (HONS) ECONOMICS SEMESTER- III

UGCF COURSE: ECON009

(ADVANCED MATHEMATICAL METHODS FOR ECONOMICS)

CREDITS: 4

TEACHER: Ms. GUNJAN KHANDELWAL

<u>**READINGS:</u></u> Sydsaeter, K., Hammond, P. (2002). Mathematics for economic analysis. Pearson Educational.</u>**

UNIT		TOPIC	READINGS	NO. OF LECTURES
1.	Multivariate Optimization with constraints	Constrained optimisation with equality and inequality constraints: geometric characterisation, Lagrange characterisation using calculus and applications; properties of value function: envelope theorem, applications.	Sydsaeter, K., Hammond, P. (2002). Mathematics for economic analysis. Pearson Educational. (Chapter 18.1 to 18.9 & 18.3 (The statement only))	19 Hours
2.	Linear programming	Introduction, graphical solution, matrix formulation, duality, economic interpretation.	Sydsaeter, K., Hammond, P. (2002). Mathematics for economic analysis. Pearson Educational. (Chapter 19)	06 Hours
3.	Integration, differential equations, and difference equations	Definite integrals, indefinite integrals and economic applications; first order and second order difference equations, equilibrium and its stability; first order differential equations, phase diagrams and stability; second order differential equations.	Sydsaeter, K., Hammond, P. (2002). Mathematics for economic analysis. Pearson Educational. (Chapter 10, 20 and 21 (except 21.9))	20 Hours

Assessment:

- 1. Internal Assessment (IA): 30 Marks two class tests (12 marks each), and 6 marks for attendance.
- 2. Continuous Assessment (CA): 40 marks –problem solving, assignments (35 marks) and 5 marks for attendance.
- 3. The end semester exam: 90 marks will comprise numerical and other questions.

TEACHING PLAN FOR B.A. (HONS) ECONOMICS SEMESTER- I

UGCF COURSE: ECON003

(INTRODUCTORY STATISTICS FOR ECONOMICS)

CREDITS: 4

TEACHER: Ms. GUNJAN KHANDELWAL

Sections: A & B

Essential Readings: Devore, J. (2012). Probability and Statistics for Engineers, 8th ed. Cengage Learn-ing.

Supplementary Readings:

Hogg, R., Tanis, E., Zimmerman, D. (2021) Probability and Statistical inference, 10th Edition, Pearson India Education Services Pvt. Ltd.

Miller, I., Miller, M. (2017). J. Freund's Mathematical Statistics with Applications, 8th ed. Pearson.

UNIT		ΤΟΡΙΟ	READINGS	NO. OF LECTURES
1.	Introduction and Overview	The distinction between populations and samples and, between population parameters and sample statistics; Pictorial Methods in Descriptive Statistics; Measures of Location and Variability.	Devore: Ch 1	5 Hours
2.	Elementary probability theory	Sample spaces and events; probability axioms and properties; counting techniques; conditional probability and Bayes' rule; independence	Devore: Ch 2	09 Hours
3.	Random variables and	Defining random variables; discrete and continuous random	Devore: Ch 3 (3.1-3.3), Ch 4 (4.1- 4.2)	10 Hours

	probability distributions	variables, probability distributions; expected values and functions of random variables. equations, equilibrium and its stability; first order differential equations, phase diagrams and stability; second order differential equations.	Dovoro: Ch 2 /2 4 2 6) and Ch 4	10 Hours
4.	Special Probability Distributions	Properties of commonly used discrete and continuous distributions (uniform, binomial, exponential, Poisson, hypergeometric and Normal random variables).	Devore: Ch 3 (3.4-3.6) and Ch 4 (4.3-4.4) including Bernoulli, Binomial, Geometric Hypergeometric, Poisson, Uniform, Exponential and Normal distribution.	10 Hours
5.	Random sampling and jointly distributed random variables	Density and distribution functions for jointly distributed random variables; computing expected values of jointly distributed random variables; conditional distributions and expectations, covariance and correlation.	Devore: Ch 5.1-5.2 (excluding the section on more than two random variables)	11 Hours

Assessment:

- **1.** Internal Assessment (IA): 30 Marks The internal assessment would comprise two class tests of 12 marks each. Lecture attendance will carry 6 marks.
- 2. Continuous Assessment (CA): 40 marks Assignments which would involve plotting the distribution in R / Excel and Quizzes / problem solving (35 marks) and 5 marks for attendance.
- 3. The end semester exam: 90 marks will comprise numerical and other questions.